China, India leads in renewable energy attractive investment

Hohoe (V/R), China and India have overtaken the US to become the two most attractive nations for renewable energy investment � according to a report.

The report by UK accountancy firm Ernst & Young detailed that both China and India have overtaken the US on the EY Renewable energy country attractiveness index (RECAI) � displacing the U.S. for the first time since 2015.

The US now stands at third place behind first place China, followed by India according to a statement to the Ghana News Agency.

Ben Warren, EY Global Power & Utilities Corporate Finance Leader and RECAI Chief Editor, said: Movements in the index illustrate the influence of policy on renewable energy investment and development � both productive and detrimental. Supportive policy and a long-term vision are critical to achieving a clean energy future.

At the beginning of 2017, China’s National Energy Administration (NEA) announced the nation will invest around $361 billion in renewable energy generation by 2020.

It said the investment will see renewables share in the country’s power mix increase to 50 per cent in addition to creating 13 million jobs � the NEA said.

According to a report released last month, China’s wind and solar energy sectors could receive up to $782 billion in investments from 2016 to 2030.

It said in 2016, China’s solar capacity grew an impressive 81.6 per cent to 77.4 gigawatts (GW), while wind power grew 13.2 per cent from 2015 to 2016 to 149 GW.

In India, the Government plans to develop 175 GW of renewable energy capacity by 2022 and to have renewable energy account for 40 per cent of installed capacity by 2040.

India added a record wind and solar energy capacity, both exceeding 5,000 megawatts (MW), from 2016 to 2017.

India has now surpassed the 10 gigawatt (GW) solar photovoltaic (PV) installation milestone, having tripled its capacity in less than three years, according Indian Minister Piyush Goyal.

The report highlighted that economically viable renewable energy alternatives coupled with security of supply concerns are encouraging more nations to transition to a cleaner energy future.

In addition, Kazakhstan (37), Panama (38) and the Dominican Republic (39) have all entered the index for the first time.

Source: Ghana News Agency

Read More >China, India leads in renewable energy attractive investment

Worm discovered to biodegrade polythene

Hohoe (V/R), Scientists have found that a caterpillar commercially bred for fishing bait has the ability to biodegrade polyethylene.

Polyethylene plastics, the toughest and most used item have become environmental nuisance globally and frequently found clogging up landfill sites in the form of shopping bags among others.

The wax worm, the larvae of the common insect Galleria mellonella, or greater wax moth, is a scourge of beehives across Europe.

In the wild, the worms live as parasites in bee colonies. Wax moths lay their eggs inside hives where the worms hatch and grow on beeswax � hence the name.

A chance discovery occurred when one of the scientific team, Federica Bertocchini, an amateur beekeeper, was removing the parasitic pests from the honeycombs in her hives. The worms were temporarily kept in a typical plastic shopping bag that became riddled with holes.

In a release to the Ghana News Agency, it said Bertocchini, from the Spanish National Research Council (CSIC), collaborated with colleagues Paolo Bombelli and Christopher Howe at the University of Cambridge’s Department of Biochemistry to conduct a timed experiment.

Around a hundred wax worms were exposed to a plastic bag from a UK supermarket. Holes started to appear after just 40 minutes, and after 12 hours there was a reduction in plastic mass of 92mg from the bag.

Scientists say that the degradation rate is extremely fast compared to other recent discoveries, such as bacteria reported last year to biodegrade some plastics at a rate of just 0.13mg a day. Polyethylene takes between 100 and 400 years to degrade in landfill sites.

“If a single enzyme is responsible for this chemical process, its reproduction on a large scale using biotechnological methods should be achievable,” said Cambridge’s Paolo Bombelli, first author of the study published today in the journal Current Biology.

“This discovery could be an important tool for helping to get rid of the polyethylene plastic waste accumulated in landfill sites and oceans.”

Polyethylene is largely used in packaging, and accounts for 40 per cent of total demand for plastic products across Europe � where up to 38 per cent of plastic is discarded in landfills. People around the world use around a trillion plastic bags every single year.

It said plastic is highly resistant to breaking down, and even when it does the smaller pieces choke up ecosystems without degrading. The environmental toll is a heavy one.

Yet nature may provide an answer. The beeswax on which wax worms grow is composed of a highly diverse mixture of lipid compounds: building block molecules of living cells, including fats, oils and some hormones.

The researchers say it is likely that digesting beeswax and polyethylene involves breaking similar types of chemical bonds, although they add that the molecular detail of wax biodegradation requires further investigation.

Wax is a polymer, a sort of ‘natural plastic,’ and has a chemical structure not dissimilar to polyethylene, said CSIC’s Bertocchini, the study’s lead author.

The researchers conducted spectroscopic analysis to show the chemical bonds in the plastic were breaking. The analysis showed the worms transformed the polyethylene into ethylene glycol, representing un-bonded ‘monomer’ molecules.

To confirm it wasn’t just the chewing mechanism of the caterpillars degrading the plastic, the team mashed up some of the worms and smeared them on polyethylene bags, with similar results.

The caterpillars are not just eating the plastic without modifying its chemical make-up. We showed that the polymer chains in polyethylene plastic are actually broken by the wax worms, said Bombelli.

The caterpillar produces something that breaks the chemical bond, perhaps in its salivary glands or a symbiotic bacteria in its gut. The next steps for us will be to try and identify the molecular processes in this reaction and see if we can isolate the enzyme responsible.

As the molecular details of the process become known, the researchers say it could be used to devise a biotechnological solution on an industrial scale for managing polyethylene waste.

Added Bertocchini: We are planning to implement this finding into a viable way to get rid of plastic waste, working towards a solution to save our oceans, rivers, and all the environment from the unavoidable consequences of plastic accumulation.

Source: Ghana News Agency

Read More >Worm discovered to biodegrade polythene